

What is the relevant d.o.f in varying distance scale?

Probe resolution

 $\pi, \rho,$

The study of nucleon resonance transitions provides a testing ground for our understanding of these effective D.o.F

Access to the essence of nonperturbative strong interactions

- generation of > 97% of nucleon mass
- ullet enhance capability to map out QCD etafunction in constituent regime

SU(6)xO(3) Classification of Baryons

Powerful channels Single and double pion electro-productions

Q^2 < 4.0 GeV²

- Nππ channel is sensitive to N*s heavier than 1.4 GeV
- Provides information that is complementary to the $N\pi$ channel
- Many higher-lying N*s decay preferentially into Nππ final states

PRC 77, 015208 (2008) PRL 97, 112003 (2006) PRC 78, 045204 (2008) PRC 73, 025204 (2006) PRC 78, 045209 (2008) PRC 80, 055203 (2009)

NSTAR 2011

CQM, pQCD and beyond

The structure of the nucleon and its excited states are much more complex than CQM

Constituent Counting Rule at high Q²

pQCD has some limits

No produce mass in the Chiral limit
No explanation quark-gluon dynamics at low energy
No description of quark confinement

Lattice QCD (LQCD)

Dynamical Chiral Symmetry Breaking (CSB)

Light Cone Sum Rule (LCSR)

LCSR vs. preliminary CLAS data near pion threshold

$$\frac{Q^2}{m_N^2}G_1^{\pi^+ n} = \frac{g_A}{\sqrt{2}}\frac{Q^2}{Q^2 + 2m_N^2}G_M^n + \frac{1}{\sqrt{2}}G_A, \qquad G_2^{\pi^+ n} = \frac{2\sqrt{2}g_Am_N^2}{Q^2 + 2m_N^2}G_E^n.$$

--- E₀₊ /G_D: LCSR (experimental electromagnetic form factors as input)

---- E_{0+}/G_D : pure LCSR calculation

--- E₀₊ /G_D: MAID2007

Transition Form Factor ←→ Distribution Amplitudes

NSTAR 2011

DA from Lattice QCD (Warkentin, Braun)

29, 30: Dalton and Denizli

31: compilation by Stoler

32: Aznauryan analysys of e1-6 CLAS data

33: Old data by Tiator

Braun et al. Phys.Rev.Lett.103:072001,2009

Experimental data/kinematic bin (el-f)

- > Apr. 04 ~ Jul. 26, 2006
- > E0 =5.499GeV (pol. e), LH2 target
- > target position = 25cm upstream
- \triangleright Length = 5cm, Φ = 6mm
- > I_B = 2250A
- > Trigger = ECin x ECtot x CC
- > Total number of runs = 608 (576 Golden runs)

Kinematic binning			
W	1.6 ~2.0 GeV	5(40MeV), 3(60MeV)	
\mathbf{Q}^2	1.7 ~4.5 GeV ²	5 (vary)	
$\cos \theta_{\pi}^*$	-1.0 ~ 1.0	10 (0.2)	
${\varphi_\pi}^*$	0° ~ 360°	24 (15°)	

Differential cross sections

Single pion electroproduction

Unpol. Xsection w/one-photon exchange approx.

$$\frac{d^{2\sigma^{2}}}{d\Omega_{\pi}^{*}} = \frac{p_{\pi}^{*}}{k_{\gamma}^{*}} \left[\sigma_{0} + h \sqrt{2\varepsilon_{L}(1-\varepsilon)} \sigma_{LT} \sin \theta_{\pi}^{*} \sin \phi_{\pi}^{*} \right]$$

$$\sigma_{0} = \sigma_{T} + \varepsilon_{L}\sigma_{L} + \varepsilon\sigma_{TT}\sin^{2}\theta_{\pi}\cos 2\phi_{\pi}^{*} + \sqrt{2\varepsilon_{L}(1+\varepsilon)}\sigma_{LT}\sin\theta_{\pi}^{*}\cos\phi_{\pi}^{*}$$

Analysis details

Summary cuts and correction in this analysis

- beam centering and vertex correction
- electron and pion fiducial volume cuts
- electron, pion momentum correction
- CC efficiencies were taken into account after Nphe cut 200x200 matrix lookup table in terms of CC geom.
- Knock out DC inefficient regions and bad TOF counters
- TOF particle detection efficiencies using $p\pi+\pi$ lookup table in terms of our final kinematic bins.
- acceptance and radiative corrections

Analysis details

MC simulation

20M basis

634M basis

Kinematic settings		
E ₀	5.499 GeV.	
W	1.4-2.0GeV	
\mathbb{Q}^2	1.5-5.0GeV ²	
Target position	-27.5, -22.5, 0.2	

^{*} AAO_RAD for electro-production : modification input parameters. .

Radiative correction

 $W=1.84[GeV], Q^2=1.80[GeV^2]$

- > ExcluRad basis exact calculation
- ightharpoonup Limited W<2.0GeV, Q2<5.0GeV2
- \succ two MAID (03/07) version tested
- > 2 or 3 times iteration
- > Using final kinematic binning

Background subtraction

- ➤ Fit the background using exp + polynomial function for high mass region
- extrapolate under neutron missing mass region
- > BG study using the final binning
 - BEFORE BG subtraction
 - AFTER BG subtraction

Example

Preliminary differential cross sections

NSTAR 2011

Exp. e1-f

> Luminosity & virtual photon flux were taken in account

Preliminary differential cross sections

Exp. e1-f

MAID 2003 (Isobar model) MAID 2007 (Isobar model) DMT2001 (Dynamic model)

May. 17 - 20, 2011 K.Park

Preliminary cross sections vs. previous data

Overall systematic error in the analysis of "e1f" data is approximately ~10 -20%

 $Q^2=1.72[GeV^2]$, $Q^2=1.8[GeV^2]$, $\phi_{\pi}^*=247.5deg$.

 $W=1.61[GeV], Q^2=1.72[GeV^2],$ $W=1.62[GeV], Q^2=1.8[GeV^2],$

 $Q^2=2.91[GeV^2]$, $Q^2=3.15[GeV^2]$, $\phi_{\pi}^*=262.5deg$.

MAID 2003 (Isobar model) MAID 2007 (Isobar model)

DMT2001 (Dynamic model)

Fitting with $A + B\cos\phi + C\cos 2\phi$

Exp. e1-f

Structure functions

Summary and Plans

- Single charged pion differential cross sections have been extracted in high lying resonance region (1.6<W<2.0GeV) using CLAS e1-f data set.
- > Preliminary results showed consistent with e1-6 data at 1.60GeV<W<1.69GeV.
- These single pion and upcoming double-pion data allow us to study extensively for high-lying resonances.
- Stay tune to finalize data and look forward to extract helicity amplitudes for high resonances.